Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants
نویسندگان
چکیده
Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (Kleaf), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m-2 s-1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (Fv/Fm) and quantum efficiency (ΦPSII) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (Kleaf) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina, and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa, increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (ΦPSII). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species.
منابع مشابه
Effects of LED Light on Seed Emergence and Seedling Quality of Four Bedding Flowers
Recently much attention has been paid by horticulturists to light-emitting diodes as a new source of economical and spectral-selective light. The reason is mainly coming from their versatility in handling and mounting, long working time, wattage use efficiency and lower heat production. In this study we examined their potential in promoting seed germination and producing quality flower seedling...
متن کاملStimuli Effects of Different LEDs on Some Morphological and Biochemical Traits of Two Varieties of Calendula officinalis
In the production of flowers and ornamental plants, especially in the advanced greenhouse conditions, it is important to have a good light source and its accurate management. This study aimed to evaluate the effect of light quality on morphological and biochemical traits of two Marigold genotypes (Iranian-native and Gitana). This experiment was conducted in a completely randomized design with t...
متن کاملImproving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation.
Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue ...
متن کاملPolychromatic Supplemental Lighting from underneath Canopy Is More Effective to Enhance Tomato Plant Development by Improving Leaf Photosynthesis and Stomatal Regulation
Light insufficient stress caused by canopy interception and mutual shading is a major factor limiting plant growth and development in intensive crop cultivation. Supplemental lighting can be used to give light to the lower canopy leaves and is considered to be an effective method to cope with low irradiation stress. Leaf photosynthesis, stomatal regulation, and plant growth and development of y...
متن کاملThe effect of different light wavelengths on metabolomic changes of mint and pennyroyal
Increasing trend in global population and climate changes are driving forces to shift toward the use of vertical farms with artificial lighting (VFALs). The main downside of VFALs is inefficient electrical usage. High efficiency and economy cost of light-emitting diodes (LED) are going to make VFALs a promising type of farming in future. Each individual species needs unique light treatment in o...
متن کامل